Axonal ramifications of hippocampal Ca1 pyramidal cells.

نویسندگان

  • W D Knowles
  • P A Schwartzkroin
چکیده

Intracellular injections of Lucifer Yellow into CA1 pyramidal cells of the in vitro guinea pig hippocampal slice enabled us to examine in detail the morphology of the axons of these neurons. We also recorded the electrophysiological responses of these neurons to alvear stimulation. In our morphological examinations, we found that many axons bifurcate in the alveus, with the major branch projecting caudally toward the subiculum and the second, thinner branch projecting rostrally toward the fimbria. Either axons may bifurcate further to produce several axon branches which follow parallel paths in the alveus. These axons also have local collaterals which project into strata oriens and pyramidale. In addition, a very fine plexus of axonal processes was observed in stratum oriens located largely within the basal dendritic field of the parent cell. Our electrophysiological experiments demonstrated that neurons could be activated antidromically by stimulation of the alveus at sites both rostral ad caudal to the neuron. Weak alvear stimulation occasionally evoked small potentials which appeared similar to fast prepotentials. The local axonal ramifications may be involved in recurrent pathways mediating feedback inhibition and/or excitation. The axonal bifurcations also may provide a basis for understanding the origins of fast prepotentials elicited with antidromic stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy.

Temporal lobe epilepsy (TLE) in humans and animals is associated with axonal sprouting of glutamatergic neurons and neosynaptogenesis in the hippocampal formation. We examined whether this plasticity of excitatory pathways contributes to an increased level of glutamatergic excitation in the CA1 region of rats experiencing chronic spontaneous limbic seizures following kainic acid or pilocarpine ...

متن کامل

A Stereological Study on Hippocampal Subfields Following Administration of Methamphetamine in Male Mice

Background and Aims: This study examined sub-chronic effects of Methamphetamine (METH) on the stereological parameters in the Cornu Ammonis (CA) of the hippocampus in adult mice. Materials and Methods: Fifteen adult male mice, eight weeks old, were randomly divided into three groups: receive saline (controls), or low-dose (LD) 2.5 mg/kg METH, or high-dose (HD) 25 mg/kg METH, via daily intrap...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 1 11  شماره 

صفحات  -

تاریخ انتشار 1981